Convergence of Nonconvergent IRK Discretizations of Optimal Control Problems with State Inequality Constraints

نویسندگان

  • John T. Betts
  • Neil Biehn
  • Stephen L. Campbell
چکیده

It has been observed that optimization codes are sometimes able to solve state constrained optimal control problems with discretizations which do not converge when used as an integrator on the constrained dynamics. Understanding this phenomenon could lead to a more robust design for direct transcription codes as well as better test problems. This paper examines how this phenomena can occur. The difference between solving index three Differential Algebraic Equations (DAEs) using the trapezoid method in the context of direct transcription for optimal control problems and a straight forward Implicit Runge-Kutta formulation of the same trapezoidal discretization is analyzed. It is shown through numerical experience and theory that the two can differ as much as O(1/h) in the control. Moreover, a small sacrifice in the accuracy of the states in the early stages of the trapezoidal method allows better accuracy in the control, where more precise solutions converge to an incorrect solution. The theoretical results are used to explain computational observations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical method for solving optimal control problem of the linear differential systems with inequality constraints

In this paper, an efficient method for solving optimal control problems of the linear differential systems with inequality constraint is proposed. By using new adjustment of hat basis functions and their operational matrices of integration, optimal control problem is reduced to an optimization problem. Also, the error analysis of the proposed method is nvestigated and it is proved that the orde...

متن کامل

A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints

This paper is the second part of our work on a priori error analysis for finite element discretizations of parabolic optimal control problems. In the first part [18] problems without control constraints were considered. In this paper we derive a priori error estimates for space-time finite element discretizations of parabolic optimal control problems with pointwise inequality constraints on the...

متن کامل

A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part I: Problems Without Control Constraints

In this paper we develop a priori error analysis for Galerkin finite element discretizations of optimal control problems governed by linear parabolic equations. The space discretization of the state variable is done using usual conforming finite elements, whereas the time discretization is based on discontinuous Galerkin methods. For different types of control discretizations we provide error e...

متن کامل

A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems

In this article we summarize recent results on a priori error estimates for space-time finite element discretizations of linear-quadratic parabolic optimal control problems. We consider the following three cases: problems without inequality constraints, problems with pointwise control constraints, and problems with state constraints pointwise in time. For all cases, error estimates with respect...

متن کامل

A Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems

In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2002